How can I stop myself from getting antibiotic-associated diarrhoea?

Answer: Take probiotics.

A paper in the prestigious Cochrane Review recently reviewed all the known scientific evidence. The authors concluded:

The overall evidence suggests a protective effect of probiotics in preventing AAD.

Cochrane Database Syst Rev. 2011 Nov 9;11:CD004827.

Probiotics for the prevention of pediatric antibiotic-associated diarrhea.

BACKGROUND:

Antibiotics alter the microbial balance within the gastrointestinal tract. Probiotics may prevent antibiotic-associated diarrhea (AAD) via restoration of the gut microflora. Antibiotics are prescribed frequently in children and AAD is common in this population.

OBJECTIVES:

The primary objectives were to assess the efficacy and safety of probiotics (any specified strain or dose) used for the prevention of AAD in children.

SEARCH STRATEGY:

MEDLINE, EMBASE, CENTRAL, CINAHL, AMED, and the Web of Science (inception to May 2010) were searched along with specialized registers including the Cochrane IBD/FBD review group, CISCOM (Centralized Information Service for Complementary Medicine), NHS Evidence, the International Bibliographic Information on Dietary Supplements as well as trial registries. Letters were sent to authors of included trials, nutra/pharmaceutical companies, and experts in the field requesting additional information on ongoing or unpublished trials. Conference proceedings, dissertation abstracts, and reference lists from included and relevant articles were also searched.

SELECTION CRITERIA:

Randomized, parallel, controlled trials in children (0 to 18 years) receiving antibiotics, that compare probiotics to placebo, active alternative prophylaxis, or no treatment and measure the incidence of diarrhea secondary to antibiotic use were considered for inclusion.

DATA COLLECTION AND ANALYSIS:

Study selection, data extraction as well as methodological quality assessment using the risk of bias instrument was conducted independently and in duplicate by two authors. Dichotomous data (incidence of diarrhea, adverse events) were combined using a pooled relative risk and risk difference (adverse events), and continuous data (mean duration of diarrhea, mean daily stool frequency) as weighted mean differences, along with their corresponding 95% confidence intervals. For overall pooled results on the incidence of diarrhea, sensitivity analyses included available case versus extreme-plausible analyses and random- versus fixed-effect models. To explore possible explanations for heterogeneity, a priori subgroup analysis were conducted on probiotic strain, dose, definition of antibiotic-associated diarrhea, antibiotic agent as well as risk of bias.

MAIN RESULTS:

Sixteen studies (3432 participants) met the inclusion criteria. Trials included treatment with either Bacillus spp., Bifidobacterium spp., Lactobacilli spp., Lactococcus spp., Leuconostoc cremoris, Saccharomyces spp., or Streptococcus spp., alone or in combination. Nine studies used a single strain probiotic agent, four combined two probiotic strains, one combined three probiotic strains, one product included ten probiotic agents, and one study included two probiotic arms that used three and two strains respectively. The risk of bias was determined to be high in 8 studies and low in 8 studies. Available case (patients who did not complete the studies were not included in the analysis) results from 15/16 trials reporting on the incidence of diarrhea show a large, precise benefit from probiotics compared to active, placebo or no treatment control. The incidence of AAD in the probiotic group was 9% compared to 18% in the control group (2874 participants; RR 0.52; 95% CI 0.38 to 0.72; I(2) = 56%). This benefit was not statistically significant in an extreme plausible (60% of children loss to follow-up in probiotic group and 20% loss to follow-up in the control group had diarrhea) intention to treat (ITT) sensitivity analysis. The incidence of AAD in the probiotic group was 16% compared to 18% in the control group (3392 participants; RR 0.81; 95% CI 0.63 to 1.04; I(2) = 59%). An a priori available case subgroup analysis exploring heterogeneity indicated that high dose (≥5 billion CFUs/day) is more effective than low probiotic dose (< 5 billion CFUs/day), interaction P value = 0.010. For the high dose studies the incidence of AAD in the probiotic group was 8% compared to 22% in the control group (1474 participants; RR 0.40; 95% CI 0.29 to 0.55). For the low dose studies the incidence of AAD in the probiotic group was 8% compared to 11% in the control group (1382 participants; RR 0.80; 95% CI 0.53 to 1.21). An extreme plausible ITT subgroup analysis was marginally significant for high dose probiotics. For the high dose studies the incidence of AAD in the probiotic group was 17% compared to 22% in the control group (1776 participants; RR 0.72; 95% CI 0.53 to 0.99; I(2) = 58%). None of the 11 trials (n = 1583) that reported on adverse events documented any serious adverse events. Meta-analysis excluded all but an extremely small non-significant difference in adverse events between treatment and control (RD 0.00; 95% CI -0.01 to 0.02).

AUTHORS’ CONCLUSIONS:

Despite heterogeneity in probiotic strain, dose, and duration, as well as in study quality, the overall evidence suggests a protective effect of probiotics in preventing AAD. Using 11 criteria to evaluate the credibility of the subgroup analysis on probiotic dose, the results indicate that the subgroup effect based on dose (≥5 billion CFU/day) was credible. Based on high-dose probiotics, the number needed to treat (NNT) to prevent one case of diarrhea is seven (NNT 7; 95% CI 6 to 10). However, a GRADE analysis indicated that the overall quality of the evidence for the primary endpoint (incidence of diarrhea) was low due to issues with risk of bias (due to high loss to follow-up) and imprecision (sparse data, 225 events). The benefit for high dose probiotics (Lactobacillus rhamnosus or Saccharomyces boulardii) needs to be confirmed by a large well-designed randomized trial. More refined trials are also needed that test strain specific probiotics and evaluate the efficacy (e.g. incidence and duration of diarrhea) and safety of probiotics with limited losses to follow-up. It is premature to draw conclusions about the efficacy and safety of other probiotic agents for pediatric AAD. Future trials would benefit from a standard and valid outcomes to measure AAD.

How can I get of infectious diarrhoea quickly?

Answer: Take probiotics.

“Used alongside rehydration therapy, probiotics appear to be safe and have clear beneficial effects in shortening the duration and reducing stool frequency in acute infectious diarrhoea.”

Here is the complete scientific abstract:

Cochrane Database Syst Rev. 2010 Nov 10;(11):CD003048.

Probiotics for treating acute infectious diarrhoea.

Abstract

BACKGROUND:

Probiotics may offer a safe intervention in acute infectious diarrhoea to reduce the duration and severity of the illness.

OBJECTIVES:

To assess the effects of probiotics in proven or presumed acute infectious diarrhoea.

SEARCH STRATEGY:

We searched the Cochrane Infectious Diseases Group’s trials register (July 2010), the Cochrane Controlled Trials Register (The Cochrane Library Issue 2, 2010), MEDLINE (1966 to July 2010), EMBASE (1988 to July 2010), and reference lists from studies and reviews. We also contacted organizations and individuals working in the field, and pharmaceutical companies manufacturing probiotic agents.

SELECTION CRITERIA:

Randomized and quasi-randomized controlled trials comparing a specified probiotic agent with a placebo or no probiotic in people with acute diarrhoea that is proven or presumed to be caused by an infectious agent.

DATA COLLECTION AND ANALYSIS:

Two reviewers independently assessed the methodological quality of the trial and extracted data. Primary outcomes were the mean duration of diarrhoea, stool frequency on day 2 after intervention and ongoing diarrhoea on day 4. A random-effects model was used.

MAIN RESULTS:

Sixty-three studies met the inclusion criteria with a total of 8014 participants. Of these, 56 trials recruited infants and young children. The trials varied in the definition used for acute diarrhoea and the end of the diarrhoeal illness, as well as in the risk of bias. The trials were undertaken in a wide range of different settings and also varied greatly in organisms tested, dosage, and participants’ characteristics. No adverse events were attributed to the probiotic intervention.Probiotics reduced the duration of diarrhoea, although the size of the effect varied considerably between studies.The average of the effect was significant for mean duration of diarrhoea (mean difference 24.76 hours; 95% confidence interval 15.9 to 33.6 hours; n=4555, trials=35) diarrhoea lasting ≥4 days (risk ratio 0.41; 0.32 to 0.53; n=2853, trials=29) and stool frequency on day 2 (mean difference 0.80; 0.45 to 1.14; n=2751, trials=20).The differences in effect size between studies was not explained by study quality, probiotic strain, the number of different strains, the viability of the organisms, dosage of organisms, the causes of diarrhoea, or the severity of the diarrhoea, or whether the studies were done in developed or developing countries.

AUTHORS’ CONCLUSIONS:

Used alongside rehydration therapy, probiotics appear to be safe and have clear beneficial effects in shortening the duration and reducing stool frequency in acute infectious diarrhoea. However, more research is needed to guide the use of particular probiotic regimens in specific patient groups.